ConnectionChain

Scenario Script Reference

Fujitsu Limited.
2024/1

Table of Contents

It OdUCHION . L Lo 3
POSItION Of This DOOK. . .. oo 3
Structure Of this DOOK o 3

1. Function of ConNeCtioNCRaINttt e et e e 4

1.1 FUNCHIONAl OVEIVIEWo e e e 4
1.2 Multi-Scenario Function (Scenario Information Management and Scenario Control). ..., .. 5
1.3 Key Management FUNCHIONo e 7
2. Interface (API SPeCIfiCation) e e e e e 8
2.1 ComMMON SPECITICAtIONot e e e 8
2.2 Scenario Information Management oo i 8
2.2.1 Register Scenario INformation.o 8
(*1) SuppOrt fOor DYNamiC ValUes et e e e e 8
(*2) Support for Dynamic Value Partial Substitution 8
(*3) Transition CONAIitiONSo et e e 9
(*4) EC-initiated Action ACtiVation oo 11
INpUt SPeCifiCatioNs FOr EC e e e e e 12
2.2.2 Update Scenario INformation. o 15
2.2.3 Get Scenario INformationo 15
2.2.4 Delete Scenario INformation. i e 15
2.2.5 Enables/Disables SCENAIIO. oo 15
2.3 SCENAMIO CONEIOL. . .ottt e 15
2.3.1 SEAME SCENGAKIO . . .o e 15
2.3.2 Get Scenario EXecUtion Status o 16
2.4 Key Management fUNCHION o s 16
2.4.1 Register Client INformation e 16
2.4.2 Update Client Informiation o e 16
2.4.3 Get Client Information List oo e 16
2.4.4 Delete Client Information. e 16
2.5 Error Code/Message List.o s 17
2.5.1 Scenario Information Management and Scenario CONLrol oo i 17
2.5.2 Ky ManagemiEnt. . . o 26

Copyright FUJITSU Limited 2024

Introduction

Position of this book

This book describes the functionality of ConnectionChain (*1 also described as CC), a security technology that
securely links different blockchains, and the API specification of the ConnectionChain. It is written for those who plan
or develop applications and services using ConnectionChain. You should also have a basic understanding of the
Internet and Web APIs before reading this book.

(*1) Fujitsu Press Release: "Fujitsu Develops Security Technology to Safely Connect Blockchains"

Technology Introduction Page: ConnectionChain

Structure of this book

This manual is organized as follows.

Chapter

Contents

1. Function of

ConnectionChain

Provides an overview of ConnectionChain, key features, and the flow of using the

API. See if you want to get an overview of the ConnectionChain.

2. Interface (API Specification)

Describes the ConnectionChain API specification.
Refer to this when you want to try to use the API of the ConnectionChain or develop

an application.

Copyright FUJITSU Limited 2024

https://www.fujitsu.com/global/about/resources/news/press-releases/2017/1115-01.html?_gl=1*1homq90*_ga*NzM0MzIyMTI0LjE2ODkxNDE3OTA.*_ga_GSRCSNXHW8*MTY5MTM5MzIwNi42LjAuMTY5MTM5MzIwOC4wLjAuMA..*_ga_3XKLQLRH61*MTY5MTM5MzIwNy42LjAuMTY5MTM5MzIwOC41OS4wLjA.
https://www.fujitsu.com/global/about/research/technology/connectionchain/index.html

1. Function of ConnectionChain

1.1 Functional Overview

ConnectionChain is a technology that allows securely linking different blockchains. Two or more independently
operated blockchain systems (For example, blockchain for money flow management, commercial flow
management) are connected through cooperative nodes. The central blockchain can then act as a Hub to manage

the logic and execution trail of the collaboration (see Figure 1).

ConnectionChain

money flow management commercial flow management
(Blockchain) (Blockchain)
‘cooperative ooperative |
node node

HYPERLEDGER™™™™ - HYPERLEDGER™

‘ transaction record ledger
(Log)

Figure 1: ConnectionChain Overview

The cooperative node in the figure is a connector that abstracts blockchain operations of various blockchain bases,
and can be connected to various blockchain bases (*2). The source code for the cooperative node has been
published (*3) in Hyperledger Cacti, a blockchain integration project run by the Linux Foundation.

Hyperledger Cacti site: https://www.hyperledger.org/use/cacti

Source code (GitHub): https://github.com/hyperledger/cacti

(*2) Fujitsu Research Portal (Research Portal) supports connectivity to the Data-e-TRUST and Ethereum Sepolia
test net.

(*3) The cooperative node for Data-TRUST (CDL) is scheduled to be released in July 2023.
Figure 2 shows the functional structure of the ConnectionChain at the Research Portal. ConnectionChain consists of

two features: Multi-Scenario Function (Scenario Information Management and Scenario Control), and Key

Management Function.

Copyright FUJITSU Limited 2024

https://www.hyperledger.org/use/cacti
https://github.com/hyperledger/cacti

Scenario Information
Management,
Scenario Control API Execution

Credential Management
API Execution

. management
Transactions g

Signature
< > wallet server

APL

execution Core Server transaction execution . Ethereum
e—‘l?s\aaST cooperative G > coogggaetlve (Sepolia)
(ECx] node — < [EC)

block monitoring and notification

Multi-scenario function op

(T e T e Deciding on collaborative processing,

recording of linked trails

management and scenario
control)

Blockchain
(Transaction Record Ledger)

ConnectionChain(CC)
*The linked blockchain is called EndChain(EC).

Figure 2: Function Configuration of ConnectionChain

<Mechanism of Multi-Scenario Function>

This function enables cooperation between blockchains by writing a “Scenario Script” that represents a set of
transactions for each linked blockchain (EC) in a pseudo language. The Research Portal supports API execution on
Data e-TRUST and transaction execution on Ethereum (Sepolia testnet). Transaction processing according to the
Scenario Script takes place on the Core Server and blockchain. Smart contracts deployed in the blockchain make
collaborative processing decisions and record federated trails.

<Mechanism of Key Management Function>

The Key Management Function manages the private key of the account registered with the EC (Ethereum). The
Core Server asks the Wallet Server to sign the transaction using the identifier (client ID) that identifies the key
given by the end user when the cooperative processing is executed. Then, a signed transaction is obtained. The
client ID is tied to the end user's Azure ID and can only be used to sign transactions with the private key.

See Sections 1.2 and 1.3 for a more practical explanation of the features and usage flow.

1.2 Multi-Scenario Function (Scenario Information
Management and Scenario Control)

The Multi-Scenario Function is a function that enables cooperation between blockchains by writing a Scenario Script
that represents a set of transactions for each linked blockchain (EC) in a pseudo language. The Scenario Script

supports writing in a common format independent of the EC type, and has the following format (Figure 3).

Copyright FUJITSU Limited 2024

operation information
vactionId": < actionId >, 1 EC operation information

"operations": [<EC operation information >], "operationId"; <EC operation ID>,

'
'
Overall Structure (Some Omitted) "nextActions": [< Next Action Information >] i "operation":{
¥ \ "chainId": < chainId >
" ; ", : ' N H
“:E:ir:j\g?-l‘[L. af:tﬁ;?.'i?ll;lc?r:r[rlljaiion >] }- ! "authParamKey": < authentication parameter name >,
. d 1 " ", : . N
"1stActionId": < Initial Action ID>, [mmmmmmmmmmmmssmmmmelesoooommooooooooos ' ' “;er:“: < transaction execution function name >,
"initParamNames": [< run-time parameter name >], ! Next operation information H H by 9s™
"authParamKeys": [< authentication parameter name > ! A
ys": [P 1 ! { filter™: < filter to filter events from EC >,
1

"conditionId": < transition condition ID>, !
"condition": < transition condition >, !
! "nextActionId": < Next Action ID>, '
! "terminalMessage™:
1

"response": [< Information to analyze the return value from EC >],
"event": [< Parse event information from EC >]

Figure 3: Scenario Script Format

The Scenario Script mainly consists of the scenario ID, Action Information (array), first Action ID, run-time
parameter name, and authentication parameter name. The Action Information includes processing for EC
(Transaction execution, reference, etc.), and when the Scenario is started, the processing defined in the Action
Information is executed in order from the first Action ID. The runtime specification parameter name and the
authentication parameter name are variable names for handling the value input at the start of the Scenario in this
script, and the former is called the Instance Dynamic Value. Action Information includes EC Operation Information
(array) and Next Action Information (array), and defines processing for EC (what kind of processing is performed
for what kind of EC) and Transition Conditions (When and what actions to perform next based on the processing
result (s) of EC) for determining next Action ID.When a Scenario is started, it follows the Scenario Script until the

next Action ID is empty.

EC Operations execution (included in the first Action) -> Transition Condition judgment and next Action decision based on the EC
Operation result

-> Execution of EC Operations (included in next Action) -> Decision of Transition Condition and decision of next Action based on EC
Operation result ...

e e

The following describes the general flow of API execution when using the multi-scenario function (Figure 4).

Register .
Scenario Enables Scenario Start Scenario Exgibggin;tg(t)us
Information

Get/Update/Detele Scenario Information,
Disables Scenario

Figure 4: Flow of using the Multi-Scenario Function

When using this function, the user follows the flow of the red frame shown in the figure.

The user first executes the Scenario Information Registration API, and then registers the Scenario Script described
above to CC. When a user activates a registered Scenario by executing Enables Scenario API, the Scenario is ready
for execution. When the user executes the Scenario Start API, CC executes the processing defined in the Scenario

Script. You can check the execution result by executing the Get Scenario Execution Status API.

Copyright FUJITSU Limited 2024

1.3 Key Management Function

The Key Management Function manages the private key of the account registered with the EC (Ethereum in the
Research portal). The flow of use and the mechanism of this function are described in Fig. 5.

@ Scenario Start
(execution parameters, client ID) @

N

@ Client Information
Registration
(Client ID, private key)

transaction

signature
¥ (Transaction
parameters,
Client ID) _ Wallet
E : server
Private key of the
Core Server ETH address
Transaction Execution (Signed P
Transmit Transaction) Cooperatlve Etheregm
> node (Sepolia)

a

A 4
Blockchain
(Transaction

Record Ledger) ConnectionChain(CC)

Figure 5: Flow of using the Key Management Function

Users can use this function if the Scenario Script described in the previous section defines the process of executing
Ethereum transactions from CC. In other words, it is a case where a transaction executed by Ethereum is signed by
CC (*). In such a case, the user first registers the client information including the client ID and the private key of
the Ethereum address with the wallet server (® in the figure 5). Export the private key of the Ethereum address
from a wallet such as MetaMask (Create an address for exclusive use of CC separately from the address used
for services such as Ethereum mainnet.). You need to keep the gas charge and the amount of money to execute
the transaction by Ethereum at the registered address. The acquisition of gas, please use
https://sepoliafaucet.com/. Refer to section 2.1 of the Environmental Value Application User Documentation for

information on creating MetaMask wallets and connecting to networks.

When executing the Scenario, the user passes the client ID, which is the identifier of the key registered in @, as
the execution argument of the Scenario Start API described in Section 1.4 (@ in the figure 5). When CC executes
an Ethereum transaction during the execution of the Scenario, the transaction signature is requested to the Wallet
Server using the submitted client ID. The Wallet Server authorizes the signature with the registered private key

before signing the transaction. The signed transaction is then returned to the Core Server and sent to Ethereum.

(*) This does not apply to the case where only Data e-TRUST is linked and "EC-initiated Action Activation

(described in Section 2.2.1)" is used to monitor transactions on Ethereum.

Copyright FUJITSU Limited 2024

2. Interface (API Specification)

This chapter describes the API specification for ConnectionChain (Scenario Information Management, Scenario Control, and Key Management).
Section 2.2 ~ 2.4 describes a list of APIs (Interface Details in OpenAPI Documentation). See Section 2.5 for the response at abnormal
termination.

2.1 Common Specification

Before using ConnectionChain, a user must be registered in our company (ID issued). When making an API request described in this manual,
it is necessary to authenticate using the user ID, obtain the access token (< ACCESS_TOKEN >), and set the Authorization: Bearer <
ACCESS_TOKEN > header in each API request. The user ID, authentication, and access token are described in detail on the Research Portal
web page.

2.2 Scenario Information Management

2.2.1 Register Scenario Information

Description Register Scenario Information

Method POST

Path /cc_scenarios

(*1) Support for Dynamic Values

By specifying "@ + Instance Dynamic Value Name", the values entered during the execution of the Scenario can be used. For Instance
Dynamic Value Names, variable names (initParamNames) that specify values to be set at the start of Scenario execution and variable names
(paramName) that specify values returned or notified from EC can be used. If a Dynamic Value Name is specified, it is replaced with the
corresponding value (Input at the start of Scenario execution and return or notification from EC) during Scenario execution.

Example) Instance Dynamic Value Name "username", for Instance Dynamic Value "taro"

Description of scenario: {"target": "@username"} — Replaced value: {"target": "taro"}

If the Instance Dynamic Value can be treated as a numerical value, it can be expressed as a calculation formula (Arguments (args),
Transition Conditions, and filter values are primary targets).

Example) 2 * @value + (100 +&rate)/100
However, calculations that do not include Dynamic Values, exponential notation, remainder calculations, and calculations other than decimal
are not supported.

Example) (2 ** 3 + 4)% 10

(*2) Support for Dynamic Value Partial Substitution

By enclosing Instance Dynamic Value Names with '(single quotes), a portion of the string can be replaced during a Scenario run.
Example) Instance Dynamic Value Name "username", for Instance Dynamic Value "taro"

Copyright FUJITSU Limited 2024

Description of scenario: {"url": "http://x.x.x/'@username'/test"} — Replaced value: {"url": "http://x.x.x/taro/test"}
In addition, this substitution precedes the value conversion of Dynamic Values not enclosed in ', so it can be applied to those Dynamic Value
names.

nou

Example) If the Instance Dynamic Value Names are “user_admin”, “user_normal”, “userType”

If you write "@user_'@userType'", you can see Dynamic Values for user_admin or user_normal by switching userType to admin or

normal.

(*3) Transition Conditions

{operationIld: < EC Operation ID >, type: < operation type >, result. < field name > < comparison operator >} or a string concatenated

with |], &&. If || and && are mixed, enclose the combination clearly in ().

<Operation Type>: REF/REQ/EVE

REF = Represent the response of the reference EC Operation (Operations that do not involve an EC state change, such as get balance
or GET requests in the API)

REQ = Represent the response of the request EC Operation (Operations involving EC state changes, such as EC transaction execution
or POST requests in the API)

EVE = Indicates event notification from EC when a request (including request EC operation) with event notification or filter setting is
performed
< fieldname >: Name defined in the name area of response or event

"

<Comparison Operator>: You can specify “==","1=",">=" “<=",“>" and “<”. When “> " or” < " is included, the comparison is

performed as a numerical value, and when not included (“==", "!="), the comparison is performed as a character string.

ur 1

<value>: Dynamic Value can be used. To specify an empty character, write (two single quotes) ”.

Example) When you want to match the value of from (described in the name area of event) contained in the event notified from EC
{operationld: 1, type: EVE, result.from == 0x407d73d8a49eeb85d32cf465507dd71d507100c1}
Example) When you want to make a judgment based on a match between the value returned by the EC Operation and the value contained
in the event notified from the EC
{operationld: 1, type: REQ, result.from == 0x407d73d8a49eeb85d32cf465507dd71d507100c1} &&

{operationld: 1, type: EVE, result.from == 0x407d73d8a49eeb85d32cf465507dd71d507100c1}

When the Transition Condition is to be judged only by "If the Operation request itself succeeds or fails, regardless of the result of the
Operation", the field name is omitted and described as follows.

"result <Comparison Operators (== or !=)> <value (OK or NG)>"

Note that “OK” can be specified for the value if response or event is omitted for the EC Operation of the operationId (For "NG" statements,
regardless of response or event).
Example) Determining success only, without reference to values returned directly by EC Operations

{operationld:1, type:REQ, result==0K}

Copyright FUJITSU Limited 2024

10

m Notice (type: when dealing with EVE conditions)
In some cases, even though the transition to the next Action has already been made by the judgment of the Transition Condition, the

judgment of the condition is made again, and the next Action is executed.

Completely cover "operation" described in "operations” to be judged and "synchronous result (REQ or REF)/asynchronous

result (EVE)" which are the result of operation with AND ("&&").

Bad Example 1) Unintended behavior because the synchronization result (REQ) satisfies conditionld: 2 first, and the asynchronous result
(EVE) also satisfies conditionId: 1 (Action ID “transfer ” is executed twice).
nextActions: [
{conditionId: "1", condition: "{operationld: 1, type: REQ, < conditionA >3} & & {operationld: 1, type: EVE, < conditionB >}",
nextActionld: "transfer"},
{conditionId: "2", condition: "{operationld: 1, type: REQ, < conditionA >}", nextActionld: "transfer"}
1
=>conditionId: 2 is not required (When both REQ and EVE operation types are used in a condition, they should not be written

alone.)

Bad Example 2) Unintended behavior because the synchronous result (REQ) satisfies conditionId: 1 and the asynchronous result (EVE) also
satisfies conditionId: 2 (Action ID “transfer ” is executed twice)
nextActions: [
{"conditionId":"1" , "condition" : "{operationld: 1, type: REQ, result == OK}" , "nextActionIld" : "transfer"},
{"conditionId":"2" , "condition" : "{operationld: 1, type: EVE, result.to == xx}" , "nextActionIld" : "transfer"}
]
=>The synchronous result (REQ) and the asynchronous result (EVE) are described by connecting "&&" as follows (when both REQ and
EVE operation types are used in the condition, they are not described independently).
nextActions: [
{"conditionId" : "1", "condition" : "{operationId: 1, type: REQ, result == OK} & & {operationld: 1, type: EVE, result.to == xx}",
"nextActionId" : "transfer"}
]
Bad Example 3) Unintended result because the asynchronous result (EVE) of operationld: 1 fills conditionId: 1, and the asynchronous
result of operationId: 2 also fills conditionId: 2 (Action IDs "transferX" and "transferY" are both executed)
nextActions: [
{conditionId: "1", condition: "{operationld: 1, type: EVE, < conditionA >}", nextActionId: "transferX"},
{conditionId: "2", condition: "{operationld: 2, type: EVE, < conditionB >3}", nextActionId: "transferY"}
1
=>If there are multiple EC operations that use asynchronous results in the same operation as described below, they shall be described by
connecting them with "&&" (not described separately when multiple conditions of Operation Type EVE are used).

nextActions: [

Copyright FUJITSU Limited 2024

11

{conditionId: "1", condition: "{operationld: 1, type: EVE, < conditionA >} && {operationld: 2, type: EVE, < conditionB >}",
nextActionld: "transferX"}

]

(*4) EC-initiated Action Activation

< Function Description >

This function is used to execute EC transactions from applications other than CC after taking into account the risks and man-hours of
depositing EC private keys in Fujitsu (see Key Management API) and executing transactions from CC. In CC, the transaction execution of EC
can be monitored by the Scenario execution, and it can be connected to the processing to another EC.

< Specific Usage >

By describing specific/record information (event) for the result notified from EC as an event and variable name/value (filter) in Tx as an
event notification condition as a set, CC can monitor transactions executed in EC. The filter description should include information that
uniquely identifies the transaction, such as txid (Because there is a risk of filtering unexpected transactions and determining Transition
Conditions). In the description of EC Operation Information, only chainld is defined, and in the Transition Condition, a condition whose
Operation Type is EVE is described and judged. When activating the operation with an Ethereum origin, start the Scenario defining the
activation of the operation with an EC origin until 25 blocks are committed (approximately 5 minutes) after executing the transaction with
Ethereum, and set filter (because the number of blocks of Ethereum cached by CC is 25 blocks).

Example) Filter Ethereum transactions using the Instance Dynamic Value (txId) given in the Scenario start parameter to determine the

from/to value.

{

"operationId": "1",

"operation": {

"chainId": "Geth"

3

"filter": {"hash": "@txId"},

"event": [{"name": "from" , "path": "from"} , {"name": "to" , "path": "to"}]
}

Copyright FUJITSU Limited 2024

Input Specifications For EC

12

The following values contained in the Scenario Information have different input specifications depending on the EC type (See Input
Specifications for EC below):

Transaction execution function name (func)

Arguments given to the transaction execution function (args)

Identify or record information (response) for results returned directly by EC Operations

Identification or logging information for the result reported as an event by the EC (event)

Variable name or value (filter) in Tx that becomes the event notification condition

Each function or func in each table has a different value that can be specified for the Operation Type included in the Transition Condition

(expressed by color).

Red: REF (reference EC Operation)

Blue: REQ (request EC Operation), EVE (request with event notification)

Ethereum Testnet (chainld: Geth)

args
Function/func Require o response filter, event
Parameter d Type Description
Function name of web3.eth function
(*) Function name that can be called by
web3.eth. <function name> on web3js.
Can be called as long as the function takes
fen o string Array [string] as an argument (e.g. Set path by referring to the return
getBalance) value of the web3.eth function
Web 3.eth Do net spefy functions that change the Reference: web3js Documentation This function is not described because it is not
function call/call state l.)f the EC, sucr.\ 2 Example:For getBalance [{"name" : intended to perform transactions (reference only).
sendSignedTransaction. "amount" , "path" : ""}] (Balance is
Reference: web3js Documentation returned and stored in the amount
The above argument to the web3.eth variable)
function
Array "
args [string] Example:[
0x407d73d8a49eeb85d32cf465507dd71d
507100c1"]
O string The source address must be preceded by
0x and must be in lowercase You can filter transactions and assign them to
from Example: specific & event variables according to the format of
0x407d73d8a49eeb85d32cf465507dd71d the transaction reported to CC (see below).
507100c1 *Any value assigned to the event variable is
o string The destination address converted to a string. Address values shall be
to Address must be preceded by Ox and must written in lower c.ase. § X
Remittance/send be all lowercase *Note that even if event and filter are described,
they cannot be guaranteed until the transaction is
o string Transfer amount (unit: wei) finalized (mainly for recording purposes).
amount Exponential notation is also available Successful execution of transactions and smart
Example: 3.78 *10714, 3.78e14 The transaction receipt will be contracts can be detected synchronously and judged
string Gas consumption (in gas) returned, so if you want to use it in by writing “result == OK ” in the condition.
gas Example (GasLimit during remittance): response, write as follows.
21000 *path is prefixed with [{"name" : m Example of filter description (narrowed down to
o Array Contract ABI :Status” i ”path”.: " the contents of to) {"to" :
fobject] Example: [{"constant": true, "inputs": transactionReceipt.status’}] "0x407d73d8a49eeb85d32cf465507dd71d507100c1
v . . B (the transaction status is stored in the "
[{"internalType": "bytes4", "name": status variable)
"interfaceld", "type": "bytes4"]
3] m Sample description of event (value is assigned to
Can also be stored in instance dynamic amount variable) [{"name" : "amount" , "path" :
values. In this case, add (escape) "¥¥¥" Reference: "value'}]
immediately before every " in the ABI, Format of the transaction receipt (the
convert it into a string, and store it in the value returned by the ® Format of transactions notified to CC
Send Contract / dynamic value. getTransactionReceipt function) Ref?renc?: rveb3.eth.g.etTrans?ctlvtv)n .
contractSend abis Dynamic Value Example: "[{¥¥¥" { "hash": "<Transaction ID>", "nonce":
constant¥¥¥": true, ¥¥¥" inputs¥¥¥"Type: "<Nonce>", "blockHash": "<block hash>",
£99¥" internalTypeyyy" yyy" "blockNumber": "<block number>",
bytesa¥¥¥" ¥¥¥" name¥ ¥": ¥¥y" "transactionIndex": "<Tx index>", "from":
interfaceld¥:¥" Y¥y" typeXyy": yyy" "<source address>", "to": "<Destination
bytes4¥¥¥"}], ..}, .." Address>", "value": "<Remittance Amount (wei)>",
"gasPrice": "<Gas Price>", "gas": "<Fees>",
"Inputs": "<Transaction input data>"}
*Input decoding not supported (event describes
undecoded data)

Copyright FUJITSU Limited 2024

https://web3js.readthedocs.io/en/v1.8.2/web3-eth.html
https://web3js.readthedocs.io/en/v1.8.2/web3-eth.html
https://docs.blastapi.io/blast-documentation/apis-documentation/core-api/ethereum/eth_gettransactionreceipt
https://docs.blastapi.io/blast-documentation/apis-documentation/core-api/ethereum/eth_gettransactionreceipt
https://docs.blastapi.io/blast-documentation/apis-documentation/core-api/ethereum/eth_gettransactionreceipt
https://docs.blastapi.io/blast-documentation/apis-documentation/core-api/ethereum/eth_gettransactionreceipt
https://web3js.readthedocs.io/en/v1.8.2/web3-eth.html#eth-gettransaction-return

13

string Source address address must start with 0x
from and be all lowercase
string Contract address address must start with
to 0x and be in lowercase Example:
0x06012c8cf97bead5deae237070f9587f8e
7a266d
string Contract Function Name
method)
Example: issueNFT
Array Contract Execution Arguments. For
[string] functions with no parameters, specify an
empty array. Not supported for arguments
params other than Array [string]
Example: ["tokenQ" ,
"0x407d73d8a49eeb85d32cf465507dd71d
507100c1"]
object Describe the parameters (Transaction
execution parameters, such as gasPrice,
gas, and value) to be included when
options executing the contract. Data, nonce is not
specified because it is set internally in CC
Example: {"gas" : "210000" , "value" :
"10000"}
abis Arra_]y
[object]
string Follow the return value of contract
o execution. All returned values are
string converted to strings
Same as contractSend m Specifying a Single Return Value by
contract execution method Setting an Empty Character for path . o . .
(cally / Example: [{"name" : "valuel", This function is not described because it does not
contractCall "path” : ""}] execute transactions.
m Specifying Multiple Return Values by
Array Setting an Array Number for path
params [string] Example: [{"name" : "valuel",
object List the parameters (from, gasPrice, gas) “path” : "payload[0]"} , {"name" :
X to include when the contract is called. "value2”, "path” : "payload[1]"}]
options

Example: {"gas": "210,000"}
Reference: Web3.eth.contract.call

Copyright FUJITSU Limited 2024

https://web3js.readthedocs.io/en/v1.8.2/web3-eth-contract.html#id32

14

Data e-TRUST (chainId: CDL)

For more on terms used in CDL and API specifications, see "Fujitsu Computing as a Service Data e-TRUST API Reference Manual"

args
Function/func response filter, event
Require e
Parameter d Type Description
History ID
It is registered as a header part (cdl: Lineage element).
eventld string If not specified, the system automatically grants it.
String (Alphabet [a-z] [A-Z], number [0 -9], _, -)
Maximum characters: 100 characters
Registered history JSON data
Register history (function to Lineage ID history JSON format, see "Appendix
It is registered as a header part (cdl: Lineage element). i
execute lineageld string)] part (9) A JSON format for the trail and
"POST/trail_registration") / String (Alphabet [a-z] [A-Z], number [0 -9], _, -) audit function” in "Fujitsu
registerHistoryData Maximum characters: 100 characters Computing as a Service Data e-
List of local data names TRUST Function Specification”
tags object .)
It is registered as a local data part (cdl: Tags element).
Additional Properties
properties object It is registered as a global data part (cdl: Event
element).
eventld o) string History ID for which Lineage is acquired
string Lineage search direction
Specify one of the following:. The default value is
i BACKWARD.)
direction . Lineage JSON Data (an array of
-BACKWARD: lineages backward . _ N .
) .) historical JSON data sets) Historical
Lineage acquisition (Function to +FORWARD: get next historical lineage R
. . - JSON format, see "Appendix A JSON
execute "GET/trail _ -BOTH: Get Lineage in both directions . .
acquisition/{cdleventid)") format for the trail and audit
. string depth of the Lineage function” in "Fujitsu Computing as a
/ getlineage Specify one of the following:. The default value is "-1". Service Data e-TRUST Function
+0: Get history only for the specified history ID Specification” Not Supported
depth -Integer: The specified number of previous and next
histories is obtained from the specified history ID.
--1: Get all lineages including the history of the specified
history ID
) string Matching Types Used in Searches
Specify one of the following three search methods History group whose header
searchType ~exactmatch: exact match search matches the search condition (array
History search (search target: -partialmatch: partial match seérch of history JSON objects) History
header part) -regexpmatch: regular expression search JSON format, see "Appendix A JSON
POST/trail_search_headers' o object Search Criteria formét for‘ the tr‘all and audlt.
/ searchByHeader Specify the attribute name and value in the following function” in "Fujitsu Computing as a
fields format: Service Data e-TRUST Function
(Multiple choices allowed) Specification
{"attribute": "value"}
(@] string Matching Types Used in Searches i .
Specify one of the following three search methods HIS.tOW group (array of history JSON
History search (search target: searchType -exactmatch: exact match search objects) whose global data part
global data part) (function to -partialmatch: partial match search matched the searcI!'\ crlterlzf History
execute -regexpmatch: regular expression search JSON format, see "Appendix A JSON
format for the trail and audit
"POST/trail_search_globaldata") o object Search Criteria R -)
/ hByGlobalDat. X . | i th function" in "Fujitsu Computing as a
searc lODalData
Y fields Specify one or more attribute names and values in the Service Data e-TRUST Function
following format: T
Specification
{"attribute": "value"}

Copyright FUJITSU Limited 2024

2.2.2

Update Scenario Information

Description | Update the Scenario Information. Only a part of the Scenario Information cannot be updated, and all the Scenario
Information is overwritten.
Can be executed only by the user who registered the scenario with the specified Scenario ID.

Method PUT

Path /cc_scenarios/

2.2.3

Get Scenario Information

Description Get Scenario Information
Method GET
Path /cc_scenarios/

2.2.4

Delete Scenario Information

Description | Delete Scenario Information

Can be executed only by the user who registered the Scenario with the specified Scenario ID.
Method DELETE
Path /cc_scenarios/

2.2.5

Enables/Disables Scenario

Description | Enables or Disables Scenario

Can be executed only by the user who registered the Scenario with the specified Scenario ID.

When the Scenario Information is updated, the Scenario becomes disabled and needs to be re-enable.
Method PUT
Path /cc_scenarios/<Scenario ID>/availability

2.3

2.3.1

Scenario Control

Start Scenario

Description Start Scenario
Use after enabling Scenario with the Scenario Enable/Disable API
(Returns error if not enabled)

Method POST

Path /cc_states

Copyright FUJITSU Limited 2024

2.3.2 Get Scenario Execution Status
Description Get Scenario Execution Status

Method GET

Path /cc_states/<Scenario Exection ID>

2.4

Key Management function

2.4.1 Register Client Information

Description | Register Client Information in Wallet Server.

Method POST

Path /cc_auth/wallet/client

2.4.2 Update Client Information

Description Update Client Information registered in Wallet Server associated with the caller's Azure user.

Method PUT

Path /cc_auth/wallet/client/<Client ID>

2.4.3 Get Client Information List

Description | Retrieve a list of client IDs associated with the calling Azure user from the Wallet Server.

Method GET

Path /cc_auth/wallet/client

2.4.4 Delete Client Information

Description | Delete Client Information associated with the calling Azure user from the Wallet Server.
Specifying a nonexistent Client ID also results in success.

Method DELETE

Path /cc_auth/wallet/client/<Client ID>

Copyright FUJITSU Limited 2024

16

17

2.5 Error Code/Message List

The error code/message list for each API execution of the ConnectionChain is described below. Error codes and messages may change due
to future version upgrades.

2.5.1 Scenario Information Management and Scenario Control

When an error occurs in the execution of the API for Scenario Information Management and Scenario Control, a response body of the

following format is returned.

{
"error":{
"code":<error code>,
"message": <error message>
}
Parameter type description
error object Error Description
code int Error code
message string Error messsage

< Error Code/Error Message List >

HTTP Status error code error message Error Description/Response

404 1002 BERENTVRVSFUA ID TY, Occurs if there is no Scenario Information corresponding
to the given Scenario ID when update/get Scenario
Information, Enable/Disable Scenario, or executing Start
Scenario API. Confirm that Scenario Snformation
corresponding to a target Scenario ID is registered, and

to register the Scenario Information as necessary.

1003 BHRSNTVRVSFUAEIT ID TY, Occurs if the Scenario Execution Status corresponding to
the target Scenario Execution ID does not exist when
executing the Get Scenario Execution Status API. Verify
that the Scenario Execution ID exists and execute the

API.

1004 BMEENTORVSFUATY, Occurs if the Scenario Information corresponding to the
given Scenario ID is not enabled when starting the
Scenario. Confirm that the Scenario is enabled by
executing a Get Scenario Information API, and enable

the Scenario.

Copyright FUJITSU Limited 2024

18

422

2004 SHUAT-IMEEENTLEE A Occurs if no Scenario data is specified when registering
or updating Scenario Information. Specify the Scenario
data in the request body and execute the API.

2005 SFUA ID MEEESNTVEE A Occurs if a Scenario ID is not specified when registering
Scenario Information or starting a Scenario. Specify the
Scenario ID in the request body and execute the API.

2006 SFUAT—HCEWEURAMYEZRSNTVEE | Occurs if Scenario data does not have actions array

Ao defined when registering or updating Scenario
Information. Define the actions array in the request
body and execute the API.

2007 SHUAT-HOBMWEIBIRICENE ID AEZ | Occurs if the actionld is not defined in the Scenario data

ENTLEEA. when registering or updating Scenario Information.
Define actionld for each Action Information of the
request body and execute API.

2008 SFUAT-HOEMFIBIRIC EC #24FIEHA" | Occurs if the operations array is not defined in the

EZEINTLER A, Scenario data when registering or updating Scenario
Information. Define the operations array in the request
body and execute the API.

2009 SHUAT-HOEMWEIBIRIC EC #24F ID N Occurs if operationId is not defined in Scenario data

EZEINTLER A, when registering or updating Scenario Information.
Define operationld in each EC Operation Information of
the request body and execute API.

2010 SFUAT-HOEMEIBIRIC EC #24FIEERA | Occurs if operation is not defined in Scenario data when

BHEZESNTLERA, registering or updating Scenario Information. Define
operation for each EC Operation Information in the
request body and execute the API.

2011 SFUAT A0 EC RIFIBIFRABIC Occurs if chainld is not defined in operation in Scenario

ChainID NMEZERENTLER A data when registering or updating Scenario Information.
Define a chainld for each operation in the request body
and execute the APL.

2014 SFUAT -0 EC IRVEIBIRNBICEREEA | Occurs if both authParamKey and signer are specified in

NSX=AF—t Signer NMEIAIBESINTLY | Scenario data Operation when registering or updating
F9. Scenario Information. Execute the API with only signer
or authParamKey (but not support signer).

2015 SFUAT - HOBEIBIRICRENEEBS R Occurs if the conditionld is not defined for an element in

£ ID EZRSNTLEEA.

the nextActions array of Scenario data when registering
or updating Scenario Information. Define a conditionId
in each nextActions array in the request body to execute

the API.

Copyright FUJITSU Limited 2024

19

2016

SFUAT - HIOEEBIRICRENEBIS S

HRIEEREINTLEE A

Occurs if condition is not defined for element in
nextActions array of Scenario data when registering or
updating Scenario Information. Define a condition in
each nextActions array in the request body to execute

the API.

2017

SHUABNISTMEESNTLER A

Occurs when enabling or disabling Scenario without
Scenario availability flag. Execute the API by specifying

availability in the request body.

422

2050

SFUAT - HIHIEREME ID HEFRSNTV

FEA.

Occurs if the Scenario data of 1stActionId is not defined
when registering or updating Scenario Information.
Define a 1stActionld in the request body and execute

the API.

2051

HIRAENE ID THRESNLEMEIBIRNS F

AT —HIFFTELEEA.

Occurs if Action Information of actionld defined for
1stActionId in Scenario data does not exist in Scenario
data when registering or updating Scenario Information.
Define 1stActionId so that 1stActionIld matches one of
the actionlds contained in the request body and execute

the APL.

2052

SFUAT —IDEFBEIRICRENFIBIRNTE

FENTLERA.

Occurs if nextActions array in Scenario data is not
defined when registering or updating Scenario
Information. Define each nextActions array in the

request body and execute the API.

2053

SHUAT-HOEME ID NEELTEREN

TWE9,

Occurs if multiple pieces of Action Information with the
same actionld are defined when registering or updating
Scenario Information. Define the actionId for each
Action Information of the request body so that it does

not overlap, and execute the API.

2054

SFIAT-HDENFIBERIC EC #84F ID I

BEUTERINTVIET.

Occurs if multiple operations with the same operationId
are defined in the operations array of Scenario data
when registering or updating Scenario Information.
Define again so that operarionId of each EC Operation
Information in the request body does not become a

duplicate definition, and execute API.

2055

SFUAT - IOEEBIRICRENEEIS S

41D PEELTEREINTLEY.

Occurs if multiple Transition Conditions with the same
conditionId defined in nextActions array of Scenario data
when registering or updating Scenario Information.
Define each Transition Condition of the request body so
that the conditionIld does not overlap and execute the

APL.

Copyright FUJITSU Limited 2024

20

2056

SFUAT -0 EC EAFHERFFERBR

AT, AUABIMEREIEERINTVET,

Occurs if the same name or paramName is defined more
than once for an object in the response or event arrays
in the operations array of Scenario data when
registering or updating Scenario Information. Redefine
each response or event object in the request body to
have a unique name or paramName and execute the

API.

2057

LR/ (SA-HF——ETERL TRV
BN, EC RFBERMBICERINTOLE

ER

Occurs if values that are not defined in authParamKeys
are defined for authParamKey for each operation in the
operations array of Scenario data when registering or
updating Scenario Information. Define the value defined
in authParamKeys for each EC operation information of

the request body in authParamKey and execute the API.

2058

SFUAT -0 EC EAFIFIREL T, BIBIR
TRBEBIINIEEDIEENRIER L

E-XoE

Occurs if neither func nor filter is defined for each
operation in the operations array of Scenario data when
registering or updating Scenario Information. Define a
func or filter for each EC Operation Information of the

request body and execute the API.

2059

SHUARIRRHEE/(SA-92—8T. A

CERIMESEEREINTLEY,

Occurs if the same value is defined more than once in
initParamNames of Scenario data when registering or
updating Scenario Information. Define a unique

initParamNames for the request body and execute the

APL.

2060

LA/ (SX—5F——ET. BURAINE

HOERINTVET,

Occurs if identical values for authParamKeys defined in
Scenario data when registering/updating Scenario
Information. Define a unique value for authParamKeys

in the request body and execute the API.

2061

SFIAT—HIDREMEIBIRT. REZRDE

F ID MEEENTLETY,

Occurs if the actionld specified for nextActionId is not
defined for an element in the nextActions array of
Scenario data when registering or updating Scenario
Information. Define a defined actionId (or an empty
character) for nextActionId in the request body and

execute the API.

2062

SFUAT—IOREEIBIRT. IRITOEE

LREIUENE ID MEEENTLET,

Occurs if the actionld specified for nextActionId is the
same as the current actionId for an element in the
nextActions array of Scenario data when registering or
updating Scenario Information. Define an actionId (or
an empty character) other than the current actionld for

nextActionld in the request body and execute the API.

Copyright FUJITSU Limited 2024

21

2063

SFUAT - IOREWEBIRT. RATEHD

BFCRUENE ID MEESNTVETY.

Occurs if the actionId specified for nextActionlId is the
same as the previously executed actionld for an element
in the nextActions array of Scenario data when
registering or updating Scenario Information. For
nextActionId of request body, define actionId (or empty
character) other than actionld already executed and

execute API.

2064

SFUAT - IOEEBIRET(LREM BT
EMT. REBO/NSA-FEMEEZNT

[AF: -

Occurs if an undefined Instance Dynamic Value Name
(@ + string) is defined for each operation (chainld,
func, args, filter) or nextActions array element in the
operations array of Scenario data when registering or
updating Scenario Information. Define Instance Dynamic
Value Names in initParamNames of the request body
and paramNames in the event, response array, and

execute the API.

2065

SFUAT IO REWEBIS AN ELLE

RTEBENTLEE A

Occurs if there is an error in the format of the element
(condition) in the nextActions array of Scenario data
when registering or updating Scenario Information.
Define a well-formed condition in the request body and
execute the API.

Reference: Transition Condition Format

{operationld: <EC Operation ID>, type: <operation

type >, result. <field name> <comparison operator>}

or a string concatenated with ||, &&. If || and && are

mixed, enclose the combination clearly in ().

2066

SFUAT - IO REMEBFESEAFT.
operatonld FEIKOZBXNRIEF (G ETHR

ESNTLEEA.

Occurs if there is an error in the operationId description
for an element (condition) in the nextActions array of
Scenario data when registering or updating Scenario
Information. Define the request body condition
according to the correct operationld format and execute

the API.

2067

SFUAT D RENWEBISEZAET.
operatonld fEIOEMEEENTLER

Ao

Occurs if there is an operationld description error for an
element (condition) in the nextActions array of Scenario
data when registering or updating Scenario Information.
Define the EC operation ID value following operationld:
for the condition of the request body and execute the

API.

Copyright FUJITSU Limited 2024

22

2068

SFUAT—HIORENWEBEEMT. KEE
M EC #24F ID h* operatonId $BIICIETE

ENTLET.

Occurs if an undefined operationld is specified for an
element (condition) in the nextActions array of Scenario
data when registering or updating Scenario Information.
Define the operationld value defined in the Action for
the operationld in the condition of the request body, and

execute the API.

2069

SFUAT - IOREWEBISSEAM T, type
EIHROERNNREFETBENTLEE

Ao

Occurs if there is an error in the description of type for
an element (condition) in the nextActions array of
Scenario data when registering or updating Scenario
Information. Define the request body condition
according to the correct type format and execute the

API.

2070

SFUAT IO REMEBFESAET. type

FRFOBEIMEESNTLEEA.

Occurs if there is a type description error for an element
(condition) in the nextActions array of Scenario data
when registering or updating Scenario Information. For
the condition of the request body, define the operation

type after "type:" and execute the API.

2071

SFIAT—HIDREMEBISSEAFT. type
PEIHDAEIC[REF/REQ/EVEIUSMMEEZ

nctnEs.

Occurs if type is a string other than [REF, REQ, EVE] for
the element (condition) in the nextActions array of
Scenario data when registering or updating Scenario
Information. Execute API by defining [REF, REQ or EVE]

as type in condition of request body.

2072

SFIAT —HIDREMEBISSAFT. result
BROEXNNMREFETBRENTLEE

Ao

Occurs if there is a description error in result for an
element (condition) in the nextActions array of Scenario
data when registering or updating Scenario Information.
Define the request body condition according to the

correct result format and execute the API.

2073

SFIAT - HIDREMEBISSAFT. result
BR(CEATIEEFIEE Tl

nTtLEthi.

Occurs if there is an error in the operator used for the
result element for an element (condition) in the
nextActions array of Scenario data when registering or
updating Scenario Information. Execute the API by
defining one of the following operators in the result in
the condition of the request body: “==", “1=", “>=",

gt ,n>rl, or“<"

2074

SFUAT —HIDREMEBFESAFT. result

BROT/ - RENTHRENTULEE A,

Occurs if there is a description error in the field name
(followed by ".") of the result element for the element
(condition) contained in the nextActions array of the

Scenario data when registering or updating Scenario

Copyright FUJITSU Limited 2024

23

Information. Execute the API by defining the field name

after "." in result in the condition of the request body.

2075

SFUAT - IORENWEBISSAT T, EC 12
RS ERBRCREROEFIN
result ZZROI1—)L RE(CFTEEENTLE

ER

Occurs if the field name (Write after ".") of the result
element is not defined in the name part of response,
event () for the element (condition) contained in the
nextActions array of Scenario data when registering or
updating Scenario Information. In the result in the
condition of the request body, define the field name
defined in response, event (name) in the Operation of
the EC Operation ID defined in the operationld of the

Transition Condition, and execute the API.

2076

SHUAT-HAOREMEBIEEMFT. J1—)
REBRLOD result BZR(CfERTIRERNESE

Fl3[==/!=]. {BIZ[OK/NG]DHTY .

Occurs if the field name (Write after ".") of the result
element is not defined for the element (condition)
contained in the nextActions array of Scenario data
when registering or updating Scenario Information.
Execute the API by defining the result in the condition of
the request body as one of the following operators:

W__m a AT e BN
==","1="“0K" or “NG”".

2077

SFIAT - HDEMFIBERFILREMEBIS

SEMT AEBFERNTRENTUEY,

Occurs if there is an error in the format of the
calculation described in each operation in the operations
array of Scenario data or in the element (condition) in
the nextActions array when registering or updating
Scenario Information. Define a well-formed equation for

the request body and execute the API.

2078

SFIAT -0 EC IEFERFTERBR

T) ZOBRNARIETY .

Occurs if the path format of the object in the response
or event array in the operations array of Scenario data is
invalid when registering or updating Scenario
Information. Define a properly formatted path for each
object in the response, event array of the request body

and execute the API.

2079

FIRIFIETE/ (SX—4&— BB TEE

LTIz,

Occurs if the initParamNames of the Scenario data is not
an array when registering or updating Scenario
Information. Define an array in the initParamNames of

the request body and execute the API.

2080

SRR/ SA—9F ——E(EFITHELT

JZa,

Occurs if authParamKeys of Scenario data is not an
array when registering or updating Scenario
Information. Define an array in the request body's

authParamKeys and execute the APIL.

Copyright FUJITSU Limited 2024

24

2081

SFIAT-HOEMEUZMIBEFI THEL T

<JZEL,

Occurs if the actions of the Scenario data is not an array
when registering or updating Scenario Information.
Define an array for actions in the request body and

execute the API.

2082

SFUAT -0 EC HFIBIRISESITIEE

LTKIZEL,

Occurs if the operations of the Scenario data is not an
array when registering or updating Scenario
Information. Define an array for operations in the

request body and execute the API.

2083

SFUAT 90 EC EFERATER BRI

BC THREL TUZE L,

Occurs if the response or event array in the operations
array of scenario data is not an array when registering
or updating scenario information. Define an array for
response, event in the request body and execute the

API.

2084

SFIAT - HOREMEIBIRIZECTI TIEEL

W,

Occurs if the nextActions array for Scenario data is not
an array when registering or updating Scenario
Information. Define an array in nextActions in the

request body and execute the API.

2085

SFIAT - HIDREMEBISSAFT. result

BROENTRENTVER A,

Occurs if the value of the element (condition) in the
nextActions array of the Scenario data does not follow
the operator in the result element when registering or
updating Scenario Information. Execute the API by
defining the value following the result operator in the

request body condition.

2100

SHUARIRRHETE/ (SA—IDEN, =Y

AT I TEZREINHE—EULFR A,

Occurs if the number of parameters in the params array
specified at the starting of the Scenario does not match
the number in the initParamNames array defined in the
Scenario data. Change the params at the starting of the
Scenario or initParamNames of the Scenario data, and

execute the API after combining the numbers of both.

2101

SRR/ (SA—IOEN, S FIAT-HTE

FEINEE—HUEEA.

Occurs if the number of parameters in the authParams
array specified at the starting of the Scenario does not
match the number of authParamKeys arrays defined in
the Scenario data. Change the authParams at the
starting of the Scenario or the authParamKeys of the
Scenario data, and execute the API after combining the

numbers of both.

2102

SFUABIRRHETE) (S A9 (F XX FFI DBC

FITHEL TUZE L,

Occurs if the value specified in the params array at the

starting of the Scenario is not an array of strings.

Copyright FUJITSU Limited 2024

25

Execute the API with an array of strings in the request

body params.

2103

SRR/ (S A—FIFECH THREL TUHEE W,

Occurs if the value specified in the authParams array at
the starting of the Scenario is not an array of strings.
Execute the API by specifying an array of strings for

authParams in the request body.

400 2104

SFIARIAERMEESN TLEEA.

Occurs if no request body is specified at the starting of
the Scenario. Execute the API by specifying parameters

in JSON format in the request body.

2200

UOIZANT —ADYA XN EREBITVE

ER

Occurs if the request data exceeds the maximum size
limit (50 MB) when each API is executed. Specify
request data smaller than the upper limit and execute

each API.

500 3000

AEBIS—TY,

Internal error. If the error persists after several runs at
different times, you should contact person in charge of

our company.

3002

BUCEFEHDZFTUA ID TY,

Occurs if the Scenario Information corresponding to the
specified Scenario ID has already been registered when
registering Scenario Information. Change Scenario ID
and execute Register Scenario Information API, or

execure Update Scenario Information API.

3003

BAUCEFREHDEITIAL ID TY.

Occurs if the specified Scenario Execution ID is already
registered when starting a Scenario. Change the stateld

to execute the API.

403 4001

SFIATBREIRIET DHERDNHOEE A

Occurs if the executing user does not have permission to
execute the Scenario Information when updating,
deleting, disabling, or enabling Scenario Information.
Specify the access token of the user who registered the
Scenario in the Authorization header and execute the

APL.

503 5000

S FUADRITICLBOVIRTY PUFFD

THSBERITUTIZEL,

Occurs if execution cannot be accepted because another
user is executing when starting the Scenario. Wait about
20 seconds and execute API again (You might have to
wait 20 seconds or more depending on the execution

status of other users.)

- 9000

RBARIS-TY,

Occurs if the Core server returns an error code that is

not defined. Contact a person of our company in charge.

Copyright FUJITSU Limited 2024

26

2.5.2 Key Management

If an error occurs during execution of the Key Management API, the following error message is returned. If you make several correct
requests according to the specifications and an error not listed in the table below occurs, please contact a person of our company in charge.

< List of error messages >

HTTP Status Error message (response body) Error Description/Response

400 {"result": "not exist!"} At login, an error occurs if the client information for the
specified client ID does not exist. Specify an existing client ID
and execute the API. (Check if it exists by executing the client

information list acquisition API)

{"result": "invalid parameter!"} Error in input parameter specification. (Required parameter

missing or over size). Run the API with required parameters.

403 {"result": "not authorized!"} An error occurs if you do not have permission to operate on
the client ID when updating, deleting, or signing a
transaction.Execute API by specifying the client ID registered

by itself.

404 Not Found An error occurs if the resource does not exist in the requested

path. Verify that the path is correct and run the API.

500 {"result": "Already exist!"} When registering client information, an error occurs if the
client information for the specified client ID already exists.

Specify the correct client ID and execute the API.

{"result": "not exist!"} When updating client information, an error occurs if no client
information exists for the specified client ID. Specify an
existing client ID and execute the API. (The existence of the
client ID is confirmed by executing the client information

acquisition API.)

Copyright FUJITSU Limited 2024

